-4.9t^2+44.1t+1=0

Simple and best practice solution for -4.9t^2+44.1t+1=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -4.9t^2+44.1t+1=0 equation:



-4.9t^2+44.1t+1=0
a = -4.9; b = 44.1; c = +1;
Δ = b2-4ac
Δ = 44.12-4·(-4.9)·1
Δ = 1964.41
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(44.1)-\sqrt{1964.41}}{2*-4.9}=\frac{-44.1-\sqrt{1964.41}}{-9.8} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(44.1)+\sqrt{1964.41}}{2*-4.9}=\frac{-44.1+\sqrt{1964.41}}{-9.8} $

See similar equations:

| x+(2/3*x)=120 | | 5y^2-10y=-3 | | x+(2/3x)=120 | | 4(2)^x-1=8 | | 2y+5y+30=180 | | x+(.667x)=120 | | P(x)=34.2(2x-1)^1/4 | | 40-8x=8 | | 2x−8=12 | | x+4*20=95 | | x-10x+20=0 | | 6x²-17-11=0 | | 5(x-2)=2(2x+1) | | 4x/3-2/3=3x/3+2/3 | | 8/n=32/16 | | 40=-x+49 | | 14x+(-22)=18+4x | | 4(9-x)=42 | | 7(3x-30)=0 | | w+6w-11=0 | | r+4r=-1 | | x2-10x+20=0 | | (6x+1)=(3x-4) | | 351=(a×8)+7 | | m/5+2=12/5 | | -4.5=6x+1.5x^-4 | | 3x/2+1/2=2 | | 4a²-12a+10a²+35a=0 | | -4.5=6x+1,5x^-4 | | 4z/5-2=6 | | -4.5=6x.1,5x^-4 | | p/3+5=9 |

Equations solver categories